Wednesday

\square Appetizer: monotonicity-related experiments with a single Neg operator © Some relevant behavioral results
¢ Some relevant fMRI results

- Main course: monotonicity-related experiments with more than one Neg operator
\square Dessert: Deciding between two views of NPI licensing
- Two different views of NPI licensing, and Flip-flop in French and Hebrew
- A processing experiment with and without flip-flop environments
- Ruling out alternative interpretations
\square Implications

Mapping the anatomy and comparing to the language regions A 3-D reconstruction

No overlap with Broca's region

More than one negation: Processing costs

Cost of DE thus far: A sentence is UE by default; monotonicity reversal is costly.

Question: Do the costs accumulate? Do DE pairs cancel each other?

Contrasting predictions:

Cumulative: cost is incurred by n (=number of DE operators) \rightarrow
RT grows with n

Cancellation: cost is incurred by the monotonicity of a sentence \rightarrow RT grows only when the number of negations is odd (=2n+1)

A neg+Q experiment with adult participants

1.1. More than half of the circles are yellow יותר מחצי מהעיגולים הם צהובים
1.2. Less than half of the circles are yellow פחות מחצי מהעיגולים הם צהובים
2.1. Not more than half of the circles are blue לא יותר מחצי מהעיגולים הם כחולים
2.2. Not less than half of the circles are blue לא פחות מחצי מהעיגולים הם כחולים

Comulative neg cost $\begin{gathered} \mathrm{RT}_{\text {Cum Neg }}= \\ =\mathrm{RT}_{\text {base }}+n^{\text {neg } *} * \mathrm{RT}_{\text {neg }} \\ \uparrow \uparrow \stackrel{\uparrow}{\uparrow} \begin{array}{c} \text {-cost } \\ \text { (baseline) } \end{array} \end{gathered}$	$\begin{aligned} & \text { Cancelation neg cost } \\ & \text { for } n^{\text {neg }}=2 n-1: \\ & R T_{\text {CanNeg }}=R T_{\text {base }}+R T_{\text {neg }} \\ & \text { for } n^{\text {neg }}=2 n \text { : } \\ & R T_{\text {CanNeg }}=R T_{\text {base }} \end{aligned}$
	Predicted RT: Neg Cancelation (DE Complexity)

Results: monotonicity determines $\Delta \mathrm{RT}\left(=\mathrm{R} \mathrm{T}_{D E}-\mathrm{RT}_{U E}\right)$

Cancelation neg cost in RT for $n^{\text {neg }}=2 n-1$:
$\mathrm{RT}_{\text {CanNeg }}=\mathrm{RT}_{\text {base }}+\mathrm{RT}_{\text {neg }}$
for $n^{\text {neg }}=2 n$:
$\mathrm{RT}_{\text {CanNeg }}=\mathrm{RT}_{\text {base }}$

Workplan

\square Appetizer: monotonicity-related experiments with a single Neg operator © Some relevant behavioral results
¢ Some relevant fMRI results
\quad Main course: monotonicity-related experiments with more than one Neg operator
\square Dessert: Deciding between two views of NPI licensing

- Two different views of NPI licensing, and Flip-flop in French and Hebrew
- A processing experiment with and without flip-flop environments
- Ruling out alternative interpretations
\square Implications

Two approaches to NPI licensing
An NPI needs a DE licensor, but where must the NPI be, for it to be licensed?
19. Operator-Based Approach (OpBA): An NPI is licensed only if it is in the scope of a downward-entailing (DE) expression. (Fauconnier, 1975; Ladusaw, 1980).
20. Environment-Based Approach (EnvBA): An NPI α is licensed in sentence S only if there is a constituent A of S containing α such that A is DE w.r.t the position of α. (Gajewski, 2005).

A distinguishing prediction: flip-flop (Chierchia, Homer)
21. ... [A」 DE ... NPI]
22. ... [\downarrow DE \ldots [a \downarrow DE_NPI]
23. *... [A \uparrow DE DE...NPI]

1*DE licensor in A	OpBA	EnvBA
1*DE licensor in A	\checkmark	\checkmark
2*DE licensors in A	\checkmark	\checkmark
		$*$

A distinguishing prediction: flip-flop (Chierchia, Homer)
11. ... [å DE ...NPI]
12.
13. *... [a \uparrow DE DE... NPI]
24. Il [a ${ }^{n}$ ' est pas possible 24. 11 Lat est impossible it is $\begin{gathered}\text { not } \\ \mathbf{i m}\end{gathered}$ possible that Jean have.SUBJ done what that this be.SUBJ to help the Mafia 'It is impossible that Jean did anything to help the Mafia.'
25. Il est impossible que Jean [${ }_{\wedge} \downarrow$ n'ait pas fait [quoi que ce soit $]_{N P I}$] pour aider la Mafia. 'It is impossible that Jean didn't do anything to help the Mafia.'

A distinguishing prediction: flip-flop (Chierchia, Homer)

		OpBA	EnvBA
	1*DE licensor in A	\checkmark	\checkmark
27. \ldots [\downarrow DE \ldots [${ }^{\text {ป }}$ DE_NPI $\left.\ldots ..\right]$	$1 *$ DE licensor in A	\checkmark	\checkmark
-28. *... [$\uparrow \uparrow$ DE DE... NPI]	2*DE licensors in A	\checkmark	*

 'It is not impossible that Jean did anything to help the Mafia.'

Hebrew=French in this respect
30. ... [ą bilti-efšari še Dani nirdam $\int_{N P I} \boldsymbol{f} \boldsymbol{y}$-pa'am/ be-šmira]
Impossible that Dani fell asleep ever
while on guard

$$
\ldots\left[\begin{array}{ll}
\mathrm{A} \downarrow \mathrm{DE} & \ldots \\
\hline
\end{array}\right.
$$

31. ...[bilti-efšari še Dani [a \uparrow lo nirdam $\int_{\text {NPI }}{ }^{\prime} \mathbf{e y}$-pa'am] be-šmira] Impossible that Dani didn't fall asleep ever while on guard

$$
\ldots[\downarrow \text { DE } \ldots[\mathrm{A} \downarrow \text { DE } . . \text { NPI] }
$$

2. *... [a \uparrow lo bilti-efšari še Dani nirdam $\int_{N P I}$ ' $\mathbf{e y}$-pa'am] be-šmira]

Not impossible that Dani fell asleep ever while on guard

$$
\text { *... [A } \uparrow \underline{\text { DE DE } \ldots N P I] ~}
$$

Workplan

\square Appetizer: monotonicity-related experiments with a single Neg operator
© Some relevant behavioral results
¢ Some relevant fMRI results
\quad Main course: monotonicity-related experiments with more than one Neg operator
\square Dessert: Deciding between two views of NPI licensing
\oint Two different views of NPI licensing, and Flip-flop in French and Hebrew

- A processing experiment with and without flip-flop environments
- Ruling out alternative interpretations
\square Implications

Processing costs of $D E$-ness

A sentence is UE by default; monotonicity reversal is costly.
We measure the cost through a verification task.

Contrasting predictions:

Operator-dependent cost: DE-processing cost is incurred by the DE-ness of a sentence Domain-dependent cost: DE-processing cost is incurred by the DE-ness of a domain

Processing costs

Processing costs	
OpBA	EnvBA
high	high
High+	High+
High+	low

Our materials: 2*DE in syntactically different configurations
26. [A \downarrow paxot me-xamiša ratzim higi’u $\int_{N P I}{ }^{\prime} \boldsymbol{e y}$-pa'am/ la-gmar]. less than-five runners reached ever to-the-finish-line
'Less than five runners ever reached the-finish-line.'
\ldots [A」 $\underline{\text { DE } \ldots N P I] ~}$
27. [paxot me-xamiša ratzim [A」 10 higi'u $\int_{\text {NPI }}{ }^{\prime} \boldsymbol{e y}$-pa'am] la-gmar].
less than-five runners not reached ever to-the-finish-line

$$
\ldots\left[\downarrow \underline{\mathrm{DE}} \ldots\left[{ }_{\mathrm{a} \downarrow} \stackrel{\mathrm{DE}}{\underline{N E}} \boldsymbol{N P I} \ldots . .\right]\right.
$$

28. *[A \uparrow lo paxot me-xamiša ratzim higi'u ey pa'am la-gmar].

An experiment with domains (with Nir Segal)

Participants:
$n=26$ in Hebrew
$n>70$ in a web-run English
equivalent

Constituent negation

2.1 [Not more than half] of the circles are blue
2.2 [Not less than half] of the circles are blue

Sentential negation

3.1 [More than half] of the circles are not blue
3.2 [Less than half] of the circles are not blue

Hebrew

English

Workplan

\square Appetizer: monotonicity-related experiments with a single Neg operator
© Some relevant behavioral results
¢ Some relevant fMRI results
\quad Main course: monotonicity-related experiments with more than one Neg operator
\square Dessert: Deciding between two views of NPI licensing
\oint Two different views of NPI licensing, and Flip-flop in French and Hebrew
\varnothing A processing experiment with and without flip-flop environments

- Ruling out alternative interpretations
\square Implications

Frequency? A Hebrew study

The relative frequency of the occurrence of each phrase in each genre.
The sum of the bins in each genre was normalized to 1

Learning: reorganizing the sequence of stimuli

- Learning hypothesis: participants learn over the testing session
- Learning enhances (speeds up) performance selectively: not less is enhanced more than the other conditions

Experimental sequence (random order across all stimuli)
$\mathrm{C}_{1,1} \mathrm{C}_{3,1} \quad \mathrm{C}_{1,2} \quad \mathrm{C}_{2,1} \quad \mathrm{C}_{4,1} \ldots$

Learning sequence (by condition) $\begin{array}{lllllll}\mathrm{C}_{1,1} & \mathrm{C}_{1,2} & \mathrm{C}_{3,1} & \mathrm{C}_{3,2} & \mathrm{C}_{3,2} & \mathrm{C}_{4,1} & \mathrm{C}_{4,2} \ldots\end{array}$

- Prediction: if we plot RT against place in the sequence $C_{0,1 \ldots n}$ the slope of the not less condition would be steeper than that of the other conditions

Selective learning?

Slope of Regression line of sequential intra-session RT remains fixed across conditions, indicating that no selective learning occurs

Tan, Kugler-Ettinger \& Grodzinsky, Lang., Cog. \& Neuro., 2023.

Workplan

\square Appetizer: monotonicity-related experiments with a single Neg operator
© Some relevant behavioral results
¢ Some relevant fMRI results
\quad Main course: monotonicity-related experiments with more than one Neg operator
\square Dessert: Deciding between two views of NPI licensing
\oint Two different views of NPI licensing, and Flip-flop in French and Hebrew
\varnothing A processing experiment with and without flip-flop environments
ब Ruling out alternative interpretations
\square Implications

What can we conclude?

Domain-based Processing Hypothesis (DPH):
$>$ parsing is bottom up
$>$ A minimal domain is UE by default
> The Monotonicity Reversal of a Domain of an NPI (MRD) incurs a processing cost

- Processing complexity is not just about individual words, but also, about syntactic and semantic properties of linguistic representations
- DE-ness (as evinced by RT in verification tasks) is one such complexity determinant
- Monotonicity is a property of syntactic domains (whose nature remains to be characterized)

CODA: A view from comparatives

The DE cost effect across numerosities and quantifier pairs

But wait:
do we really expect a $D E$ cost in comparatives?

The monotonicity of (phrasal) comparatives
$\{$ cats $\} \subset\{$ mammals $\},\{$ snakes $\} \subset\{$ reptiles $\}$
(1) a. UE: More cats than snakes died \Rightarrow More mammals than snakes died
b. DE: More cats than reptiles died \Rightarrow More cats than snakes died
(2) a. DE: Fewer mammals than snakes live in deserts
\Rightarrow Fewer cats than snakes live in deserts
b. UE: Fewer cats than snakes live in big cities
\Rightarrow Fewer cats than reptiles live in big cities

Comparatives appear to have mixed monotonicity
(3) a. [There are more blue circles] ${ }^{\mathrm{UE}}$ [than yellow circles] ${ }^{\mathrm{DE}}$
b. [There are fewer blue circles] ${ }^{\text {DE }}$ [than yellow circles] ${ }^{\mathrm{UE}}$

Predicted DEC effect (assuming additivity of UE, DE):

$$
\Delta R T=R T_{(3 b)}-R T_{(3 a)}=R T_{D E+U E}-R T_{U E+D E} \approx 0
$$

Observed effect: $\Delta R T>0$.

Paths toward a solution

I. Experimental path: if sentence is not read to the end, the result follows:
(4) a. UE half: [There are more blue circles] ${ }^{U E}$ [than yellow circles] ${ }^{\mathrm{DE}}$
b. DE half: [There are fewer blue circles] ${ }^{D E}$ [than yellow circles] ${ }^{U E}$

If so, then the predicted effect is
(5) $\Delta \mathrm{RT}=\mathrm{RT}_{(4 \mathrm{~b})}-\mathrm{RT}_{(4 \mathrm{a})}>0$

Needed: an experiment that would get around this problem.
II. Theory path: the representation of monotonicity above is incorrect.

The ingredients of the equation

$$
\begin{equation*}
\Delta R T=R T_{(3 \mathrm{~b})}-R T_{(3 \mathrm{a})}=R T_{\mathrm{DE}+\mathrm{UE}}-R T_{U E+D E} \approx 0 \tag{6}
\end{equation*}
$$

need to be reconsidered.

Down the experimental path

Goal: force participants to read instruction sentence to the end.
Trick: add a color. Inform participants that there may be a sentence-image color mismatch. Add a $3^{\text {rd }}$ response button (MM), to force them to attend to the end:
(7)
a. There are more blue circles than yellow circles.

b. There are fewer yellow circles than red circles.
c. There are more red circles than blue circles.

Results and Status

Notes:
The experiment was done in Hebrew.
Results only include correct T/F responses (MM excluded); error rates are low.

Conclusion: The experimental path is not the way out of the puzzle.

The Seuren/Rullman puzzle: NPIs in comparatives

Expected: NPIs are licensed only in the " $\mathrm{M} \downarrow$ part" of the more-comparative
(8) a. there are more [students] ${ }^{\mathrm{M} \uparrow}$ than [(there are) profs I've ever ${ }_{\text {NPI }}$ met] ${ }^{\mathrm{M} \downarrow}$
b. ${ }^{*}$ there are more [students I've ever ${ }_{\text {NPI }}$ met] ${ }^{\mathrm{M} \downarrow}$ than [(there are) profs] ${ }^{\mathrm{M} \uparrow}$

Expected: NPI licensing in the " $\mathrm{M} \downarrow$ part" of less-comparatives:
(9) there are fewer [students I've ever ${ }_{\text {NPI }}$ met] ${ }^{\text {M } \downarrow}$ than [(there are) profs] ${ }^{\text {M }}{ }^{\uparrow}$

Unexpected: NPI licensing in the " $\mathrm{M} \uparrow$ " of less-comparatives:
(10) there are fewer [students] ${ }^{\mathrm{M} \downarrow}$ than [(there are) profs I've ever ${ }_{\text {NPI }}$ met] ${ }^{\mathrm{M} \uparrow}$

The Seuren/Rullman puzzle and the DEC effect

This pattern would follow if the DE operator count were:
(11) a. More [(there are) blue circles] ${ }^{\text {UE }}$ [than yellow circles] ${ }^{\text {DE }}$
b. Fewer [(there are) blue circles] $]^{D E}\left[\right.$ than yellow circles] ${ }^{D E * D E}$

Counting DE operators for processing
(12)
a. More:
$-e r^{M \downarrow}\left[\right.$ than $\exists d^{\prime} / d^{\prime}$-many yellow circles][ヨd/d-many blue circles]] $=1 * D E$
b. Fewer:
$\left[-e r^{M \downarrow}\left[\right.\right.$ than little ${ }^{M \downarrow} \exists d^{\prime} / d^{\prime}$-many [yellow circles][little ${ }^{M \downarrow} \exists d / d$-many [blue circles]]

$$
=3 * D E
$$

DE operator count explains the DEC effect in comparatives

1. Assume that each $M \downarrow$ operator contributes equally to processing cost. $D E C$ is determined by the number of $M \downarrow$ (DE)-operators, $n_{D E}$, in a given LF:

$$
\begin{aligned}
& D E \text { cost: } \\
& n_{D E}\left(\mathrm{LF}_{2}\right)>n_{D E}\left(\mathrm{LF}_{1}\right) \Rightarrow \mathrm{RT}\left(\mathrm{LF}_{2}\right)>{ }^{\mathrm{s} R T}\left(\mathrm{LF}_{1}\right) .
\end{aligned}
$$

2. The DEC effect can now be used to compare the number of $D E$ operators (all else equal).
3. The DEC effect might help us uncover hidden DE operators through RT patterns (e.g., where $2 n * D E=n U E$).
4. In such cases, NPIs would be licensed in environments that appear UE due to an even number of DE operators.
