

Wednesday

- Appetizer: monotonicity-related experiments with a single Neg operator
 - ✓ Some relevant behavioral results
 - ✓ Some relevant fMRI results
- □ Main course: monotonicity-related experiments with more than one Neg operator
- Dessert: Deciding between two views of NPI licensing
 - Two different views of NPI licensing, and Flip-flop in French and Hebrew
 - A processing experiment with and without flip-flop environments
 - o Ruling out alternative interpretations
- Implications

Mapping the anatomy and comparing to the language regions A 3-D reconstruction

No overlap with Broca's region

More than one negation: Processing costs

<u>Cost of DE thus far</u>: A sentence is UE by default; monotonicity reversal is costly.

Question: Do the costs accumulate? Do DE pairs cancel each other?

Contrasting predictions:

Cumulative: cost is incurred by n (=number of DE operators) \rightarrow RT grows with n

Cancellation: cost is incurred by the monotonicity of a sentence \rightarrow RT grows only when the number of negations is odd (=2*n*+1)

A neg+Q experiment with adult participants

- 1.1. More than half of the circles are yellow יותר מחצי מהעיגולים הם צהובים
- 1.2. Less than half of the circles are yellow פחות מחצי מהעיגולים הם צהובים
- 2.1. Not more than half of the circles are blue לא יותר מחצי מהעיגולים הם כחולים
- 2.2. Not less than half of the circles are blue לא פחות מחצי מהעיגולים הם כחולים

Results: monotonicity determines $\Delta RT(=RT_{DE} - RT_{UE})$

Workplan

- Appetizer: monotonicity-related experiments with a single Neg operator
 - ✓ Some relevant behavioral results
 - ✓ Some relevant fMRI results
- Main course: monotonicity-related experiments with more than one Neg operator
- Dessert: Deciding between two views of NPI licensing
 - o Two different views of NPI licensing, and Flip-flop in French and Hebrew
 - A processing experiment with and without flip-flop environments
 - o Ruling out alternative interpretations
- Implications

Two approaches to NPI licensing

An NPI needs a DE licensor, but where must the NPI be, for it to be licensed?

19. **Operator-Based Approach (OpBA):** An NPI is licensed only if it is in **the scope** of a

downward-entailing (DE) expression. (Fauconnier, 1975; Ladusaw, 1980).

20. Environment-Based Approach (EnvBA): An NPI α is licensed in sentence *S* only if there is a constituent A of *S* containing α such that A is DE w.r.t the position of α. (Gajewski, 2005).

A distinguishing prediction: flip-flop (Chierchia, Homer)

OpBAEnvBA21. ... $[A\downarrow DE ... NPI]$ 1*DE licensor in A \checkmark 22. ... $[\downarrow DE ... [A\downarrow DE _NPI]$ 1*DE licensor in A \checkmark 23. *... $[A\uparrow DE DE ... NPI]$ 2*DE licensors in A \checkmark

A distinguishing prediction: flip-flop (Chierchia, Homer)

		OpBA	EnvBA
11 [_{A↓} <u>DE</u> <i>NPI</i>]	1*DE licensor in A	\checkmark	\checkmark
$-12. \dots [\downarrow \underline{\mathbf{DE}} \dots [_{\mathbf{A}\downarrow} \underline{\mathbf{DE}} \underline{\mathbf{NPI}} \dots]$	1*DE licensor in A	\checkmark	\checkmark
13. * [_{A↑} <u>DE DE</u> <i>NPI</i>]	2*DE licensors in A	✓	*

24. Il $\begin{bmatrix} A I \\ A I \end{bmatrix}$ rest pas possible que Jean ait fait [quoi que ce soit]_{NPI}] pour aider la Mafia. it is $\frac{not}{im}$ possible that Jean have.SUBJ done what that this be.SUBJ to help the Mafia 'It is impossible that Jean did anything to help the Mafia.'

25. Il est impossible que Jean $[A\downarrow n'ait pas fait [quoi que ce soit]_{NPI}]$ pour aider la Mafia.

'It is impossible that Jean didn't do anything to help the Mafia.'

A distinguishing prediction: flip-flop (Chierchia, Homer)

		ОрВА	EnvBA
26 [_{A↓} <u>DE</u> <i>NPI</i>]	1*DE licensor in A	\checkmark	\checkmark
27 [$\downarrow \underline{DE} \dots [_{A\downarrow} \underline{DE} NPI \dots]$	1*DE licensor in A	\checkmark	\checkmark
— 28. * [_{A↑} <u>DE DE</u> <i>NPI</i>]	2*DE licensors in A	\checkmark	*

- 29. *Il $[A_{\uparrow} n']$ est **pas im**possible que Jean ait fait *[quoi que ce soit]*_{NPI}] pour aider la Mafia.

'It is **not im**possible that Jean did anything to help the Mafia.'

Hebrew=French in this respect

- 30. ... [A] bilti-efšari še Dani nirdam [NPI 'ey-pa'am] be-šmira] Impossible that Dani fell asleep ever while on guard $\dots \begin{bmatrix} A \end{bmatrix} \underbrace{\mathsf{DE}} \dots NPI \dots \end{bmatrix}$...[bilti-efšari še Dani [At lo nirdam [NPI 'ey-pa'am] be-šmira] 31. Impossible that Dani didn't fall asleep ever while on guard $\dots [\downarrow \underline{DE} \dots [_{A\downarrow} \underline{DE} \dots NPI \dots]$ 2. *... $[_{A\uparrow} lo bilti$ -efšari še Dani nirdam $[_{NPI} ey-pa'am]$ be-šmira] Not impossible that Dani fell asleep ever while on guard
 - *... [_{A↑} <u>**DE DE**</u>... *NPI*]

Workplan

- Appetizer: monotonicity-related experiments with a single Neg operator
 - ✓ Some relevant behavioral results
 - ✓ Some relevant fMRI results
- Main course: monotonicity-related experiments with more than one Neg operator
- Dessert: Deciding between two views of NPI licensing
 - ✓ Two different views of NPI licensing, and Flip-flop in French and Hebrew
 - A processing experiment with and without flip-flop environments
 - o Ruling out alternative interpretations
- Implications

Processing costs of DE-ness

A sentence is UE by default; monotonicity reversal is costly.

We measure the cost through a verification task.

Contrasting predictions:

Operator-dependent cost: DE-processing cost is incurred by the DE-ness of a sentence **Domain-dependent cost**: DE-processing cost is incurred by the DE-ness of a domain

23. $\dots [A \downarrow DE \dots X]$ 1*DE licensor in A24. $\dots [\downarrow DE \dots [A \downarrow DE X \dots]$ 1*DE licensor in A25. $\dots [A \uparrow DE DE \dots X \dots]$ 2*DE licensors in A

Our materials: 2*DE in syntactically different configurations

- 26. [A paxot me-xamiša ratzim higi'u [NPI 'ey-pa'am] la-gmar].
 - less than-five runners reached ever to-the-finish-line

'Less than five runners ever reached the-finish-line.'

 $\dots [A\downarrow \underline{DE} \dots NPI \dots]$

27. [paxot me-xamiša ratzim [$_{A\downarrow}$ lo higi'u [$_{NPI}$ 'ey-pa'am] la-gmar].less than-five runners not reached everto-the-finish-line

 $\dots \begin{bmatrix} \downarrow \underline{DE} \dots \begin{bmatrix} _{A\downarrow} \underline{DE} \ NPI \dots \end{bmatrix}$

28. $*[_{A\uparrow}lo paxot me-xamiša ratzim higi'u ey pa'am la-gmar].$ **not less** than-five runners reached [NPI'ey-pa'am] to-the-finish-line

An experiment with domains (with Nir Segal)

Hebrew

Participants: n=26 in Hebrew n>70 in a web-run English equivalent

Constituent negation

- 2.1 [Not more than half] of the circles are blue
- 2.2 [Not less than half] of the circles are blue

Sentential negation

- 3.1 [More than half] of the circles are not blue
- 3.2 [Less than half] of the circles are not blue

Workplan

- Appetizer: monotonicity-related experiments with a single Neg operator
 - ✓ Some relevant behavioral results
 - ✓ Some relevant fMRI results
- Main course: monotonicity-related experiments with more than one Neg operator
- Dessert: Deciding between two views of NPI licensing
 - ✓ Two different views of NPI licensing, and Flip-flop in French and Hebrew
 - ✓ A processing experiment with and without flip-flop environments
 - o Ruling out alternative interpretations
- Implications

Frequency? A Hebrew study

The relative frequency of the occurrence of each phrase in each genre. The sum of the bins in each genre was normalized to 1

Learning: reorganizing the sequence of stimuli

- Learning hypothesis: participants learn over the testing session
- Learning enhances (speeds up) performance selectively: not less is enhanced more than the other conditions

Experimental sequence (random order across all stimuli)

Learning sequence (by condition) $C_{1,1} C_{1,2} C_{3,1} C_{3,2} C_{3,2} C_{4,1} C_{4,2}...$

Prediction: if we plot RT against place in the sequence C_{•,1...n}
 the slope of the not less condition would be steeper than that of the other conditions

Selective learning?

Slope of Regression line of sequential intra-session RT remains fixed across conditions, indicating that no *selective* learning occurs

Tan, Kugler-Ettinger & Grodzinsky, Lang., Cog. & Neuro., 2023.

Workplan

- Appetizer: monotonicity-related experiments with a single Neg operator
 - ✓ Some relevant behavioral results
 - ✓ Some relevant fMRI results
- Main course: monotonicity-related experiments with more than one Neg operator
- Dessert: Deciding between two views of NPI licensing
 - ✓ Two different views of NPI licensing, and Flip-flop in French and Hebrew
 - ✓ A processing experiment with and without flip-flop environments
 - ✓ Ruling out alternative interpretations
- Implications

What can we conclude?

Domain-based Processing Hypothesis (DPH):

- parsing is bottom up
- A minimal domain is UE by default
- > The Monotonicity Reversal of a Domain of an NPI (MRD) incurs a processing cost
- Processing complexity is not just about individual words, but also, about syntactic and semantic properties of linguistic representations
- DE-ness (as evinced by RT in verification tasks) is one such complexity determinant
- Monotonicity is a property of syntactic domains (whose nature remains to be characterized)

CODA: A view from comparatives

The DE cost effect across numerosities and quantifier pairs

IÜLICH

But wait: do we really expect a DE cost in comparatives?

The monotonicity of (phrasal) comparatives

{cats} < {mammals}, {snakes} < {reptiles}

(1) a. UE: More <u>cats</u> than snakes died \Rightarrow More <u>mammals</u> than snakes died

b. **DE**: More cats than <u>reptiles</u> died \Rightarrow More cats than <u>snakes</u> died

(2) a. **DE**: Fewer <u>mammals</u> than snakes live in deserts

 \Rightarrow Fewer <u>cats</u> than snakes live in deserts

b. UE: Fewer cats than <u>snakes</u> live in big cities \Rightarrow Fewer cats than <u>reptiles</u> live in big cities

Comparatives appear to have mixed monotonicity

(3) a. [There are more blue circles]^{UE} [than yellow circles]^{DE}

b. [There are fewer blue circles]^{DE} [than yellow circles]^{UE}

Predicted DEC effect (assuming additivity of UE, DE): $\Delta RT=RT_{(3b)} - RT_{(3a)} = RT_{DE+UE} - RT_{UE+DE} \approx 0.$

Observed effect: $\Delta RT > 0$.

I. <u>Experimental path</u>: if sentence is not read to the end, the result follows:

(4) a. <u>UE half</u>: [There are more blue circles]^{UE} [than yellow circles]^{DE}
b. <u>DE half</u>: [There are fewer blue circles]^{DE} [than yellow circles]^{UE}

If so, then the predicted effect is

(5) $\Delta RT = RT_{(4b)} - RT_{(4a)} > 0$

<u>Needed</u>: an experiment that would get around this problem.

II. <u>Theory path</u>: the representation of monotonicity above is incorrect.

The ingredients of the equation

(6)
$$\Delta RT = RT_{(3b)} - RT_{(3a)} = RT_{DE+UE} - RT_{UE+DE} \approx 0.$$

need to be reconsidered.

Down the experimental path

JÜLICH FORSCHUNGSZENTRUM

Goal: force participants to read instruction sentence to the end. Trick: add a color. Inform participants that there may be a sentence-image color mismatch. Add a 3rd response button (MM), to force them to attend to the end:

- (7)
- a. There are more blue circles than yellow circles.
- b. There are fewer yellow circles than red circles.
- c. There are more red circles than blue circles.

Results and Status

Notes:

ELSC The Edmond & Lify

The experiment was done in Hebrew.

Results only include correct T/F responses (MM excluded); error rates are low.

<u>Conclusion</u>: The experimental path is not the way out of the puzzle.

Expected: NPIs are licensed only in the "M↓ part" of the more-comparative
(8) a. there are more [students]^{M↑} than [(there are) profs I've ever_{NPI} met]^{M↓}
b. *there are more [students I've ever_{NPI} met]^{M↓} than [(there are) profs]^{M↑}

Expected: NPI licensing in the " $M \downarrow$ part" of less-comparatives: (9) there are fewer [students I've ever_{NPI} met]^{M↓} than [(there are) profs]^{M↑}

<u>Unexpected: NPI licensing in the "M</u>^{\uparrow}" of less-comparatives: (10) there are fewer [students]^{M↓} than [(there are) profs I've ever_{NPI} met]^{M↑}

The Seuren/Rullman puzzle and the DEC effect

This pattern would follow if the <u>DE</u> operator count were:

(11) a. More [(there are) blue circles]^{UE} [than yellow circles]^{DE}

b. Fewer [(there are) blue circles]^{DE} [than yellow circles]^{DE*DE}

Counting DE operators for processing

(12)

a. More:

 $-er^{M\downarrow}$ [than $\exists d'/d'$ -many yellow circles][$\exists d/d$ -many blue circles]] =1*DE

b. Fewer:

 $[-er \stackrel{M}{\downarrow} [than little \stackrel{M}{\downarrow} \exists d'/d'-many [yellow circles][little \stackrel{M}{\downarrow} \exists d/d-many [blue circles]]$ =3*DE

DE operator count explains the DEC effect in comparatives

- 1. Assume that each $M \downarrow$ operator contributes equally to processing cost.
 - DEC is determined by the number of $M\downarrow$ (DE)-operators, n_{DE} , in a given LF:

```
DE cost :

n_{\text{DE}}(\text{LF}_2) > n_{\text{DE}}(\text{LF}_1) \Longrightarrow \text{RT}(\text{LF}_2) > \text{sRT}(\text{LF}_1).
```

- 2. The DEC effect can now be used to compare the number of DE operators (all else equal).
- 3. The DEC effect might help us uncover hidden DE operators through RT patterns (e.g., where 2n*DE =nUE).
- 4. In such cases, NPIs would be licensed in environments that appear UE due to an even number of DE operators.